OCR accuracy improvement on document images through a novel pre-processing approach

نویسندگان

  • Abdeslam El Harraj
  • Naoufal Raissouni
چکیده

Digital camera and mobile document image acquisition are new trends arising in the world of Optical Character Recognition and text detection. In some cases, such process integrates many distortions and produces poorly scanned text or text-photo images and natural images, leading to an unreliable OCR digitization. In this paper, we present a novel nonparametric and unsupervised method to compensate for undesirable document image distortions aiming to optimally improve OCR accuracy. Our approach relies on a very efficient stack of document image enhancing techniques to recover deformation of the entire document image. First, we propose a local brightness and contrast adjustment method to effectively handle lighting variations and the irregular distribution of image illumination. Second, we use an optimized greyscale conversion algorithm to transform our document image to greyscale level. Third, we sharpen the useful information in the resulting greyscale image using Un-sharp Masking method. Finally, an optimal global binarization approach is used to prepare the final document image to OCR recognition. The proposed approach can significantly improve text detection rate and optical character recognition accuracy. To demonstrate the efficiency of our approach, an exhaustive experimentation on a standard dataset is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Dewarping Based on Text Line Detection and Surface Modeling (RESEARCH NOTE)

Document images produced by scanner or digital camera, usually suffer from geometric and photometric distortions. Both of them deteriorate the performance of OCR systems. In this paper, we present a novel method to compensate for undesirable geometric distortions aiming to improve OCR results. Our methodology is based on finding text lines by dynamic local connectivity map and then applying a l...

متن کامل

رفع اعوجاج هندسی متون به‌کمک اطلاعات هندسی خطوط متن

Document images produced by scanners or digital cameras usually have photometric and geometric distortions. If either of these effects distorts document, recognition of words from such a document image using OCR is subject to errors. In this paper we propose a novel approach to significantly remove geometric distortion from document images. In this method first we extract document lines from do...

متن کامل

Adaptive pre-OCR cleanup of grayscale document images

This paper describes new capabilities of ImageRefiner, an automatic image enhancement system based on machine learning (ML). ImageRefiner was initially designed as a pre-OCR cleanup filter for bitonal (black-and-white) document images. Using a single neural network, ImageRefiner learned which image enhancement transformations (filters) were best suited for a given document image and a given OCR...

متن کامل

A Morphological Image Preprocessing Suite for OCR on Natural Scene Images

As demand grows for mobile applications, research in optical character recognition (OCR), a technology well-developed for document imaging, is shifting focus to the recognition of text embedded in digital photographs or video. Segmenting text and background in natural scenes is a difficult classification problem, and the accuracy of this segmentation is of utmost importance when the output of a...

متن کامل

OCR correction based on document level knowledge

For over 10 years, the Information Science Research Institute (ISRI) at UNLV has worked on problems associated with the electronic conversion of archival document collections. Such collections typically have a large fraction of poor quality images and present a special challenge to OCR systems. Frequently, because of the size of the collection, manual correction of the output is not affordable....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1509.03456  شماره 

صفحات  -

تاریخ انتشار 2015